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CELLULARITY

Definition (Schmerl, 1990 [13])
M is cellular if whenever we choose some subset the components
of one type, and fix everything else pointwise, Aut(M) induces
still the full symmetric group on the chosen components.

Theorem
If M is cellular, then it is ω-categorical and ω-stable.

Key intuition: M is cellular if it encodes neither a linear
order nor an infinite equivalence relation.
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A COLLECTION OF THEOREMS

(Macpherson-Pouzet-Woodrow, 1992 [12]) Given an age A,
let Mod(A) be the countable structures of age A. Then
|Mod(A)| ∈

{
1,ℵ0, 2ℵ0

}
, and is ≤ ℵ0 ⇐⇒ M is cellular.

(Laskowski-Mayer, 1996 [9]) Let M be (atomically) stable
and countable. If Sub(M) is the set of substructures, up to
isomorphism, then
|Sub(M)| < 2ℵ0 ⇐⇒ |Sub(M)| ≤ ℵ0 ⇐⇒ M is cellular.
(Falque-Thiéry, 2020 [6]) If M is homogeneous and the
unlabeled growth rate of M is at most a polynomial, then M
is (essentially) cellular.
Cellularity similarly corresponds to an initial interval for
the labeled growth rate (Bodirsky-Bodor, 2018 [2]), even for
arbitrary hereditary classes (Laskowski-Terry, 2018 [10]).
(B.-Laskowski, 2019 [4]) Counting structures bi-embeddable
with a given countable structure. (To be elaborated on.)
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UNARY EXPANSIONS

Given a property P, a structure/theory is monadically P if
any expansion by (finitely many) unary relations still has P.
Cellular structure are monadically cellular.

Theorem (B.-Laskowski [5])
M is monadically ω-categorical ⇐⇒ M is cellular.
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MA-PRESENTATIONS

Definition
Given a set A, a relation R ⊂ Ak is mutually algebraic if there is
some N such that for any proper 2-partition of k, we have
∀y∃≤Nx such that R(x, y).

Example
The edge relation in a bounded-degree graph is mutually
algebraic. So is any unary relation.

Definition
M is MA-presented if every atomic relation is mutually algebraic.
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DECOMPOSING MA-PRESENTED STRUCTURES

Theorem (B.-Laskowski [5])
An MA-presented structure admits a decomposition like cellular
structures, but without the finiteness conditions.

Example
Consider a model of (Z, succ).

Components are connected components, which agree with
algebraic closure.
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MUTUAL ALGEBRAICITY

Definition
A theory is mutually algebraic if, after expanding by constants,
every model is q.f.-interdefinable with an MA-presented
structure.

Example
Consider the theory of an equivalence relation with n infinite
classes. After naming a point in each class, this is quantifier-free
interdefinable with n unary relations.

Theorem (B.-Laskowski [5])
Given a mutually algebraic M, the cellular-like decomposition of any
MA-presentation of M induces a corresponding decomposition of M.
The decomposition of M is largely independent of the choice of
MA-presentation.
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MUTUAL ALGEBRAICITY AND CELLULARITY

Theorem (B.-Laskowski [5])
M is cellular ⇐⇒ M is mutually algebraic and ω-categorical.

Recall the components correspond to the algebraic closures
of their elements, and ω-categoricity forces these to be finite.

Theorem (B.-Laskowski [5])
If M is mutually algebraic but not cellular, then some elementary
extension contains infinitely many new pairwise-isomorphic infinite
components.

So if M is mutually algebraic but not cellular, an elementary
extension encodes an infinite equivalence relation.
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SUPPORTING ARRAYS

Definition
Given a structure M, a quantifier-free type p over M supports an
infinite array if there is some N �M with infinitely many disjoint
realizations of p.

Lemma
p(x̄) supports an infinite array ⇐⇒ p ` xi 6= m for every
xi ∈ x̄,m ∈M.

Theorem (Laskowski-Terry [11])
M is not mutually algebraic ⇐⇒ there is some N �M and some
k ∈ ω such that infinitely many k-types over N support infinite arrays.

Arrays over (Q, <) and an infinite equivalence relation.
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UNARY EXPANSIONS

Theorem (Laskowski [8])
Mutually algebraicity is preserved under expansions by unary (in
fact mutually algebraic) relations.
T is mutually algebraic ⇐⇒ T is monadically NFCP.
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SIBLINGS

Definition
Two structures are siblings if they are bi-embeddable.
Given a structure M, Sib(M) counts the number of siblings, up to
isomorphism (including M itself).

Conjecture (Thomassé)

Given a countable relational structure M, Sib(M) ∈
{

1,ℵ0, 2ℵ0
}

.

Note (N,+,×, 0, 1) has only one sibling, so it doesn’t seem
like Sib(M) measures model-theoretic complexity
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SIBLINGS AND CELLULARITY

Theorem (B.-Laskowski [4])
Given a countable structure M in a finite relational language, either

1 M is cellular and has either 1 or ℵ0 siblings.
2 M is not cellular, and there is some age-preserving N ⊃M such

that N has 2ℵ0 siblings.

Corollary
Thomassé’s conjecture is true for ω-categorical or countable
universal structures (in a finite relational language).
Thomassé’s conjecture is true when coarsened to ages (in a finite
relational language).



Cellularity Mutual Algebraicity Siblings: A case study Monadic stability Questions References

THE PARADIGMATIC CASES
1 M = (Q, <)

2 M is an infinite equivalence relation

3 M = (Z, succ)
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MORE ON THE PROOF

The proof follows the general strategy proposed.

1 The unstable case is handled similarly to (Q, <)

2 The stable non-mutually algebraic case is handled similarly
to the infinite equivalence relation, using the infinite arrays
to mimic equivalence classes.

3 The mutually algebraic non-cellular case is handled
similarly to (Z, succ) by adding infinitely many new infinite
components.

A significant technical hurdle is that these arguments take
place on tuples, but “being in the same tuple” might not be
definable.
A lot of work is spent showing that we can treat tuples like
singletons.
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MONADIC STABILITY

Example
The theory of an infinite equivalence relation is monadically
stable, but not mutually algebraic.

Theorem (Baldwin-Shelah [1])
The following are equivalent.

1 T is monadically stable.
2 T is stable and monadically NIP.
3 Models of T admit a nice decomposition into trees of countable

models.
4 There is no unary expansion with a definable infinite linear order

on singletons.
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MONADIC STABILITY AND MUTUAL ALGEBRAICITY

Since mutual algebraicity is the same as monadic NFCP,
monadic stability is a generalization.

Theorem (B.-Laskowski)
T is mutually algebraic ⇐⇒ its models admit a nice tree
decomposition of depth 1.

Theorem (B.-Laskowski)
If T is monadically stable but not mutually algebraic, then

1 Some model admits a unary expansion with a definable infinite
equivalence relation on singletons.

2 Some model admits a mutually algebraic expansion that codes
graphs.
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USES?
It seems like monadic stability could be another stepping
stone in proofs, similar to mutual algebraicity.
The results about encoding configurations on singletons in
unary expansions is very appealing, if a problem can be
shown to be “blind” to unary expansions.

Conjecture (Pouzet-Sauer-Thomassé)
Given an age A, let |Mod(A)/≡| count the bi-embeddability classes of
countable structures of age A. Then |Mod(A)/≡| ∈

{
1,ℵ0,ℵ1, 2ℵ0

}
.

Furthermore, it is 1 iff A is cellular.

An example for ℵ0 is an infinite equivalence relation; for ℵ1
is (Q, <)
A guess: if A is not monadically NIP, then there are 2ℵ0

classes; if A is not monadically stable, there are ≥ ℵ1 classes.
Want to show unary expansions of A don’t affect the
outcome.
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THE ω-CATEGORICAL CASE

Definition
M is hereditarily cellular of depth ≤ n if it admits a decomposition
like cellular structures, except the non-exceptional components
are allowed to be hereditarily cellular of depth ≤ n− 1.

Example
Infinite equivalence relations are hereditarily cellular of depth 2.

Theorem (Lachlan [7])
M is monadically stable and ω-categorical ⇐⇒ M is hereditarily
cellular of depth n for some n ∈ ω.

Theorem (B. [3])
A homogeneous M has subexponential unlabeled growth rate iff M is
(essentially) hereditarily cellular.
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A PICTURE
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QUESTIONS

Conjecture
Given an age A, |Mod(A)/≡| is 1 if A is cellular, and infinite
otherwise.

Question
Can the intuition that cellular structures are characterized by stability
and not encoding an infinite equivalence relation be usefully formalized
further?

Question
When/why are the monadic versions of model-theoretic properties
relevant?
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